

Characteristics of Microcrystalline Cellulose Grades Suitable for Continuous Direct Compression System

Tomohisa Fujisawa, Akihiro Azetsu, Yuji Hayashi Asahi Kasei Corp.

CONTACT INFORMATION: Fujisawa.th@om.asahik-kasei.co.jp, https://www.ceolus.com/en/

EXECUTIVE SUMMARY

- · The continuous production system, especially the continuous direct compression process (CDC) is attracting attention as it doesn't need the scale-up process of development thus can reduce the production cost.
- · In this study, we compared different types of MCC grades called CEOLUS™ (Table 1.) to investigate what powder properties contribute to process compatibility and which grade is suitable for CDC system.
- · As the result, we found Basic Flow Energy (BFE) as an important parameter for powder mixing uniformity.
- · Among the samples tested, KG-1000 had the lowest BFE, excellent content uniformity due to the uniform progress of powder mixing, and other excellent tablet properties.

	KG-1000	KG-802	UF711	PH-102
Particle size D50 (µm)	50	50	50	90
Bulk density (g/mL)	0.12	0.21	0.22	0.30
Repose angle (°)	57	49	42	42
SEM Image (×500)				

Table 1. Powder properties of MCCs

EXPERIMENT METHODS

No.				
Formulation	KG-1000 ¹	KG-802	UF-711	PH-102
Acetaminophen (APAP)	40	40	40	40
Spray-dried lactose (Lactose)	41	37	37	37
MCC:CEOLUS™	15	20	20	20
Croscarmellose sodium (CCS)	2	1	1	1
Silicon dioxide (SiO ₂)	1	1	1	1
Magnesium stearate (Mg-St)	1	1	1	1
Bulk density (g/mL)	0.416	0.433	0.440	0.470
Repose angle (°)	46	43	42	42

Figure 2. Image of CDC system (CRA-RIS SYSTEM)

Table 2. Formulation and properties of powder mix

Due to the limited number of LIW feeders, lactose and CCS, APAP and SiO₂ are premixed and set in the LIW feeder.

2: Continuous direct compression system: CRA-RIS SYSTEM (Kikusui Seisakusho)
45 punches, Turntable rotation speed: 41.2 rpm
Force feeder rotation speed: 45 rpm
CRATER screen diameter: φ3.0 mm (KG-1000)
φ2.0 mm (KG-802, UF-711, PH-102)
Tablet size: 180 mg, φ8 mm - 12R
Run time: 60 min
Sampling time: 0, 2, 4, 6, 8, 10, 15, 30, 45, 60 min
Compression Force: (Main compression) 12 kN
(Pre-compression) 6 kN

Tablet weight, API content, tablet hardness, friability, disintegration and dissolution

Figure 1. Procedure of continuous direct compression production

RESULTS AND DISCUSSIONS

Feed Rate of MCCs from Loss-in-Weight feeder

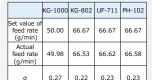
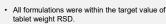



Table 3. feed rate of each CEOLUS™ grades

Figure 3. feed rate of each CEOLUS™ grades during the run time

All CEOLUS™ grades showed constant feed rate from loss-in-weight feeder under steady status.

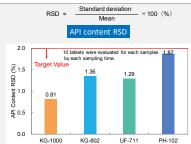
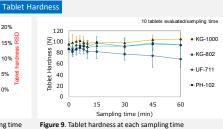
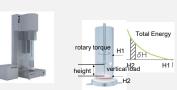



Figure 5. Average API content RSD of tablet sampled

- at 0, 15, 30, 45 and 60 minute.



KG-1000 showed highest tablet hardness and lowest hardness RSD

· KG-1000 showed the lowest API content RSD. grades measured by powder rheometer

7. Basic Flowability Energy of CEOLUS™

- KG-1000 showed the lowest BFE energy per volume among all CEOLUS™ grades
- It is considered that powder mixing proceeds uniformly with small Bi

Figure 10. Average friability of all sampling time

. KG-1000, KG-802 and UF-711 were within target

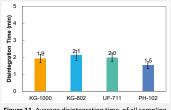


Figure 11. Average disintegration time of all sampling

All formulations showed favorable disintegration time (less than 3min).

100 80 ▲ KG-1000 Rate 60 ▲ KG-802 → UF-711 40 -e-PH-102 45

Figure 12. Average disintegration time of tablet sampled at 0, 15, 30, 45 and 60 minute

All formulations showed favorable dissolution profiles (higher than 85% at 15 minutes).

Table 4. Summary of tablet evaluation results

No.			2		
Items	Target	KG-1000	KG-802	UF-711	PH-102
Tablet Weight RSD	<2.0%	1.0%	1.0%	1.3%	1.0%
API content RSD	<2.0%	0.81%	1.36%	1.29%	1.87%
Tablet Hardness	>50N	100 N	91 N	93 N	81 N
Tablet Hardness RSD	-	7%	8%	7%	10%
Friability	<0.20%	0.15%	0.17%	0.17%	0.22%
Disintegrating Time	<30 min	1.9 min	2.1 min	2.0 min	1.5 min
Dissolution rate After 15 min	>85%	100%	100%	100%	99.7%

CEOLUS™ KG-1000 showed the best performance among all CEOLUS™ grades.

ACKNOWLEDEGMENT

We would like to thank everyone at KIKUSUI SEISAKUSHO LTD for allowing us to use the continuous production system equipment in conducting this research.